Running audioadapter nodes.
Runs an output audioadapter using audiotestsrc as follower with an input audioadapter using alsa-pcm-sink as follower for easy testing.
#include "config.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dlfcn.h>
#include <errno.h>
#include <pthread.h>
#include <poll.h>
#include <getopt.h>
#define MIN_LATENCY 1024
#define CONTROL_BUFFER_SIZE 32768
#define DEFAULT_RAMP_SAMPLES (64*1*1024)
#define DEFAULT_RAMP_STEP_SAMPLES 200
#define DEFAULT_RAMP_TIME 2000
#define DEFAULT_RAMP_STEP_TIME 5000
#define DEFAULT_DEVICE "hw:0,0"
#define LINEAR "linear"
#define CUBIC "cubic"
#define DEFAULT_SCALE SPA_AUDIO_VOLUME_RAMP_LINEAR
#define NON_NATIVE "non-native"
#define NATIVE "native"
#define DEFAULT_MODE NON_NATIVE
struct buffer {
};
struct data {
const char *plugin_dir;
uint32_t n_support;
struct buffer source_buffer[1];
struct buffer control_buffer[1];
int buffer_count;
bool start_fade_in;
double volume_accum;
uint32_t volume_offs;
const char *alsa_device;
const char *mode;
uint32_t volume_ramp_samples;
uint32_t volume_ramp_step_samples;
uint32_t volume_ramp_time;
uint32_t volume_ramp_step_time;
bool running;
pthread_t thread;
};
static int load_handle (
struct data *data,
struct spa_handle **handle,
const
char *lib,
const char *name,
struct spa_dict *info)
{
int res;
void *hnd;
uint32_t i;
char *path;
if ((path =
spa_aprintf(
"%s/%s", data->plugin_dir, lib)) == NULL)
return -ENOMEM;
hnd = dlopen(path, RTLD_NOW);
free(path);
if (hnd == NULL) {
printf("can't load %s: %s\n", lib, dlerror());
return -ENOENT;
}
printf("can't find enum function\n");
res = -ENOENT;
goto exit_cleanup;
}
for (i = 0;;) {
if ((res = enum_func(&factory, &i)) <= 0) {
if (res != 0)
printf(
"can't enumerate factories: %s\n",
spa_strerror(res));
break;
}
continue;
continue;
data->n_support)) < 0) {
printf("can't make factory instance: %d\n", res);
goto exit_cleanup;
}
return 0;
}
return -EBADF;
exit_cleanup:
dlclose(hnd);
return res;
}
static int init_data(struct data *data)
{
int res;
const char *str;
void *iface;
if ((str = getenv("SPA_PLUGIN_DIR")) == NULL)
str = PLUGINDIR;
data->plugin_dir = str;
data->start_fade_in = true;
data->volume_accum = 0.0;
data->volume_offs = 0;
if ((res = load_handle (data, &handle, "support/libspa-support.so",
return res;
printf("can't get System interface %d\n", res);
return res;
}
data->log = iface;
if ((res = load_handle(data, &handle,
"support/libspa-support.so",
return res;
printf("can't get System interface %d\n", res);
return res;
}
data->system = iface;
if ((res = load_handle(data, &handle,
"support/libspa-support.so",
return res;
printf("can't get interface %d\n", res);
return res;
}
data->loop = iface;
printf("can't get interface %d\n", res);
return res;
}
data->control = iface;
if ((str = getenv("SPA_DEBUG")))
data->log->level = atoi(str);
return 0;
}
static int make_node(
struct data *data,
struct spa_node **node,
const char *lib,
const char *name,
const struct spa_dict *props)
{
int res = 0;
void *hnd = NULL;
uint32_t i;
char *path;
if ((path =
spa_aprintf(
"%s/%s", data->plugin_dir, lib)) == NULL)
return -ENOMEM;
hnd = dlopen(path, RTLD_NOW);
free(path);
if (hnd == NULL) {
printf("can't load %s: %s\n", lib, dlerror());
return -ENOENT;
}
printf("can't find enum function\n");
res = -ENOENT;
goto exit_cleanup;
}
for (i = 0;;) {
void *iface;
if ((res = enum_func(&factory, &i)) <= 0) {
if (res != 0)
printf(
"can't enumerate factories: %s\n",
spa_strerror(res));
break;
}
continue;
continue;
if ((res =
data->n_support)) < 0) {
printf("can't make factory instance: %d\n", res);
goto exit_cleanup;
}
printf("can't get interface %d\n", res);
goto exit_cleanup;
}
*node = iface;
return 0;
}
return -EBADF;
exit_cleanup:
dlclose(hnd);
return res;
}
static int get_ramp_samples(struct data *data)
{
int samples = -1;
if (data->volume_ramp_samples)
samples = data->volume_ramp_samples;
else if (data->volume_ramp_time) {
samples = (data->volume_ramp_time * 48000) / 1000;
}
if (!samples)
samples = -1;
return samples;
}
static int get_ramp_step_samples(struct data *data)
{
int samples = -1;
if (data->volume_ramp_step_samples)
samples = data->volume_ramp_step_samples;
else if (data->volume_ramp_step_time) {
samples = (data->volume_ramp_step_time / 1000) * (48000 / 1000);
}
if (!samples)
samples = -1;
return samples;
}
static double get_volume_at_scale(struct data *data)
{
return data->volume_accum;
return (data->volume_accum * data->volume_accum * data->volume_accum);
return 0.0;
}
static int fade_in(struct data *data)
{
printf("fading in\n");
void *buffer = data->control_buffer->datas[0].data;
int ramp_samples = get_ramp_samples(data);
int ramp_step_samples = get_ramp_step_samples(data);
double step_size = ((double) ramp_step_samples / (double) ramp_samples);
uint32_t buffer_size = data->control_buffer->datas[0].maxsize;
data->control_buffer->datas[0].chunk[0].size = buffer_size;
data->volume_offs = 0;
do {
data->volume_accum += step_size;
data->volume_offs += ramp_step_samples;
} while (data->volume_accum < 1.0);
}
else {
int res = 0;
uint8_t buffer[1024];
printf("can't call volramp set params %d\n", res);
return res;
}
}
return 0;
}
static int fade_out(struct data *data)
{
printf("fading out\n");
int ramp_samples = get_ramp_samples(data);
int ramp_step_samples = get_ramp_step_samples(data);
double step_size = ((double) ramp_step_samples / (double) ramp_samples);
void *buffer = data->control_buffer->datas[0].data;
uint32_t buffer_size = data->control_buffer->datas[0].maxsize;
data->control_buffer->datas[0].chunk[0].size = buffer_size;
data->volume_offs = ramp_step_samples;
do {
data->volume_accum -= step_size;
data->volume_offs += ramp_step_samples;
} while (data->volume_accum > 0.0);
} else {
uint8_t buffer[1024];
int res = 0;
printf("can't call volramp set params %d\n", res);
return res;
}
}
return 0;
}
static void do_fade(struct data *data)
{
switch (data->control_io.status) {
break;
default:
return;
}
}
if (data->start_fade_in)
fade_in(data);
else
fade_out(data);
data->control_io.buffer_id = 0;
}
data->start_fade_in = !data->start_fade_in;
}
static int on_sink_node_ready(void *_data, int status)
{
struct data *data = _data;
int runway = (get_ramp_samples(data) / 1024);
if (data->buffer_count == 0)
do_fade(data);
data->buffer_count++;
if (data->buffer_count > (runway * 2))
data->buffer_count = 0;
return 0;
}
.ready = on_sink_node_ready,
};
static int make_nodes(struct data *data)
{
int res = 0;
uint8_t buffer[1024];
char value[32];
float initial_volume = 0.0;
if ((res = make_node(data, &data->source_follower_node,
"audiotestsrc/libspa-audiotestsrc.so",
"audiotestsrc",
printf("can't create source follower node (audiotestsrc): %d\n", res);
return res;
}
printf("created source follower node %p\n", data->source_follower_node);
.rate = 48000,
.channels = 2 ));
printf("can't set format on follower node (audiotestsrc): %d\n", res);
return res;
}
snprintf(value, sizeof(value), "pointer:%p", data->source_follower_node);
if ((res = make_node(data, &data->source_node,
"audioconvert/libspa-audioconvert.so",
printf("can't create source adapter node: %d\n", res);
return res;
}
printf("created source adapter node %p\n", data->source_node);
printf("can't setup source follower node %d\n", res);
return res;
}
info.channels = 1;
info.rate = 48000;
printf("can't setup source node %d\n", res);
return res;
}
if ((res = make_node(data, &data->sink_follower_node,
"alsa/libspa-alsa.so",
printf("can't create sink follower node (alsa-pcm-sink): %d\n", res);
return res;
}
printf("created sink follower node %p\n", data->sink_follower_node);
snprintf(value, sizeof(value), "pointer:%p", data->sink_follower_node);
if ((res = make_node(data, &data->sink_node,
"audioconvert/libspa-audioconvert.so",
printf("can't create sink adapter node: %d\n", res);
return res;
}
printf("created sink adapter node %p\n", data->sink_node);
printf("can't setup sink follower node %d\n", res);
return res;
}
printf("Selected (%s) alsa device\n", data->alsa_device);
if (!data->start_fade_in)
initial_volume = 1.0;
info.channels = 1;
info.rate = 48000;
else
printf("can't setup sink node %d\n", res);
return res;
}
printf("can't configure initial volume %d\n", res);
return res;
}
&data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) {
printf("can't set io buffers on port 0 of source node: %d\n", res);
return res;
}
printf("set io buffers on port 0 of source node %p\n", data->source_node);
&data->source_sink_io[0], sizeof(data->source_sink_io[0]))) < 0) {
printf("can't set io buffers on port 0 of sink node: %d\n", res);
return res;
}
printf("set io buffers on port 0 of sink node %p\n", data->sink_node);
data->position.clock.target_duration = 1024;
data->position.clock.rate = data->position.clock.target_rate;
data->position.clock.duration = data->position.clock.target_duration;
&data->position, sizeof(data->position))) < 0) {
printf("can't set io position on source node: %d\n", res);
return res;
}
&data->position, sizeof(data->position))) < 0) {
printf("can't set io position on sink node: %d\n", res);
return res;
}
&data->position.clock, sizeof(data->position.clock))) < 0) {
printf("can't set io clock on source node: %d\n", res);
return res;
}
&data->position.clock, sizeof(data->position.clock))) < 0) {
printf("can't set io clock on sink node: %d\n", res);
return res;
}
&data->control_io, sizeof(data->control_io))) < 0) {
printf("can't set io buffers on control port 1 of sink node\n");
return res;
}
}
return res;
}
static void
init_buffer(
struct data *data,
struct spa_buffer **bufs,
struct buffer *ba,
int n_buffers,
{
int i;
for (i = 0; i < n_buffers; i++) {
struct buffer *b = &ba[i];
bufs[i] = &b->buffer;
b->buffer.metas = b->metas;
b->buffer.n_metas = 1;
b->buffer.datas = b->datas;
b->buffer.n_datas = 1;
b->header.flags = 0;
b->header.seq = 0;
b->header.pts = 0;
b->header.dts_offset = 0;
b->metas[0].data = &b->header;
b->metas[0].size = sizeof(b->header);
b->datas[0].flags = 0;
b->datas[0].fd = -1;
b->datas[0].mapoffset = 0;
b->datas[0].maxsize = size;
b->datas[0].data = malloc(size);
b->datas[0].chunk = &b->chunks[0];
b->datas[0].chunk->offset = 0;
b->datas[0].chunk->size = 0;
b->datas[0].chunk->stride = 0;
}
}
static int negotiate_formats(struct data *data)
{
int res;
struct spa_pod *filter = NULL, *param = NULL;
uint8_t buffer[4096];
size_t buffer_size = 1024;
printf("can't set format on source node: %d\n", res);
return res;
}
printf("can't set format on source node: %d\n", res);
return res;
}
printf("can't set format on control port of source node: %d\n", res);
return res;
}
}
return res ? res : -ENOTSUP;
return res;
init_buffer(
data,
data->source_buffers,
data->source_buffer, 1, buffer_size);
return res;
printf(
"allocated and assigned buffer(%ld) to source node %p\n", buffer_size,
data->source_node);
return res;
printf(
"allocated and assigned buffers to sink node %p\n",
data->sink_node);
init_buffer(
data,
data->control_buffers,
data->control_buffer, 1, CONTROL_BUFFER_SIZE);
return res;
printf(
"allocated and assigned control buffers(%d) to sink node %p\n", CONTROL_BUFFER_SIZE,
data->sink_node);
}
return 0;
}
static void *loop(void *user_data)
{
struct data *data = user_data;
printf("enter thread\n");
while (data->running) {
}
printf("leave thread\n");
return NULL;
return NULL;
}
static void run_async_sink(struct data *data)
{
int res, err;
printf("got error %d\n", res);
printf("Source node started\n");
printf("got error %d\n", res);
printf("sink node started\n");
data->running = true;
if ((err = pthread_create(&data->thread, NULL, loop, data)) != 0) {
printf("can't create thread: %d %s", err, strerror(err));
data->running = false;
}
printf("sleeping for 1000 seconds\n");
sleep(1000);
if (data->running) {
data->running = false;
pthread_join(data->thread, NULL);
}
printf("got error %d\n", res);
printf("got error %d\n", res);
}
static const char *getscale(uint32_t scale)
{
const char *scale_s = NULL;
scale_s = LINEAR;
scale_s = CUBIC;
return scale_s;
}
static void show_help(struct data *data, const char *name, bool error)
{
fprintf(error ? stderr : stdout, "%s [options] [command]\n"
" -h, --help Show this help\n"
" -d, --alsa-device ALSA device(\"aplay -l\" for more info) to play the samples on(default %s)\n"
" -m, --mode Volume Ramp Mode(\"NonNative\"(via Control Port) \"Native\" (via Volume Ramp Params of AudioAdapter plugin)) (default %s)\n"
" -s, --ramp-samples SPA_PROP_volumeRampSamples(Samples to ramp the volume over)(default %d)\n"
" -a, --ramp-step-samples SPA_PROP_volumeRampStepSamples(Step or incremental Samples to ramp the volume over)(default %d)\n"
" -t, --ramp-time SPA_PROP_volumeRampTime(Time to ramp the volume over in msec)(default %d)\n"
" -i, --ramp-step-time SPA_PROP_volumeRampStepTime(Step or incremental Time to ramp the volume over in nano sec)(default %d)\n"
" -c, --scale SPA_PROP_volumeRampScale(the scale or graph to used to ramp the volume)(\"linear\" or \"cubic\")(default %s)\n"
"examples:\n"
"adapter-control\n"
"-->when invoked with out any params, ramps volume with default values\n"
"adapter-control --ramp-samples=70000, rest of the parameters are defaults\n"
"-->ramps volume over 70000 samples(it is 1.45 seconds)\n"
"adapter-control --alsa-device=hw:0,0 --ramp-samples=70000\n"
"-->ramps volume on \"hw:0,0\" alsa device over 70000 samples\n"
"adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --mode=native\n"
"-->ramps volume on \"hw:0,0\" alsa device over 70000 samples in native mode\n"
"adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --mode=native\n"
"-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in native mode\n"
"adapter-control --alsa-device=hw:0,0 --ramp-time=1000 --ramp-step-time=5000 --mode=native\n"
"-->ramps volume on \"hw:0,0\" alsa device over 1000 msec in steps of 5000 nano seconds(5 msec)in native mode\n"
"adapter-control --alsa-device=hw:0,0 --ramp-samples=70000 --ramp-step-samples=200 --mode=native\n"
"-->ramps volume on \"hw:0,0\" alsa device over 70000 samples with a step size of 200 samples in native mode\n"
"adapter-control --alsa-device=hw:1,0 --scale=linear\n"
"-->ramps volume on \"hw:1,0\" in linear volume scale, one can leave choose to not use the linear scale here as it is the default\n"
"adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --scale=cubic\n"
"-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale\n"
"adapter-control --alsa-device=hw:1,0 --ramp-samples=70000 --mode=native --scale=cubic\n"
"-->ramps volume on \"hw:1,0\" alsa device over 70000 samples deploying cubic volume scale in native mode\n"
"adapter-control --alsa-device=hw:1,0 --ramp-time=3000 --scale=cubic --mode=native\n"
"-->ramps volume on \"hw:1,0\" alsa device over 3 seconds samples with a step size of 200 samples in native mode\n",
name,
DEFAULT_DEVICE,
DEFAULT_MODE,
DEFAULT_RAMP_SAMPLES,
DEFAULT_RAMP_STEP_SAMPLES,
DEFAULT_RAMP_TIME,
DEFAULT_RAMP_STEP_TIME,
getscale(DEFAULT_SCALE));
}
int main(int argc, char *argv[])
{
struct data data = { 0 };
int res = 0, c;
data.volume_ramp_samples = DEFAULT_RAMP_SAMPLES;
data.volume_ramp_step_samples = DEFAULT_RAMP_STEP_SAMPLES;
data.alsa_device = DEFAULT_DEVICE;
data.mode = DEFAULT_MODE;
data.scale = DEFAULT_SCALE;
static const struct option long_options[] = {
{ "help", no_argument, NULL, 'h' },
{ "alsa-device", required_argument, NULL, 'd' },
{ "mode", required_argument, NULL, 'm' },
{ "ramp-samples", required_argument, NULL, 's' },
{ "ramp-time", required_argument, NULL, 't' },
{ "ramp-step-samples", required_argument, NULL, 'a' },
{ "ramp-step-time", required_argument, NULL, 'i' },
{ "scale", required_argument, NULL, 'c' },
{ NULL, 0, NULL, 0}
};
setlocale(LC_ALL, "");
while ((c = getopt_long(argc, argv, "hdmstiac:", long_options, NULL)) != -1) {
switch (c) {
case 'h':
show_help(&data, argv[0], false);
return 0;
case 'm':
printf("Invalid Mode(\"%s\"), using default(\"%s\")\n", optarg, DEFAULT_MODE);
else
data.mode = optarg;
break;
case 'c':
printf("Invalid Scale(\"%s\"), using default(\"%s\")\n", optarg,
getscale(DEFAULT_SCALE));
else
break;
case 'd':
data.alsa_device = optarg;
break;
case 's':
data.volume_ramp_samples = atoi(optarg);
break;
case 't':
data.volume_ramp_time = atoi(optarg);
if (!data.volume_ramp_step_time)
data.volume_ramp_step_time = DEFAULT_RAMP_STEP_TIME;
data.volume_ramp_samples = 0;
data.volume_ramp_step_samples = 0;
break;
case 'a':
data.volume_ramp_step_samples = atoi(optarg);
break;
case 'i':
data.volume_ramp_step_time = atoi(optarg);
break;
default:
show_help(&data, argv[0], true);
return -1;
}
}
if ((res = init_data(&data)) < 0) {
printf(
"can't init data: %d (%s)\n", res,
spa_strerror(res));
return -1;
}
if ((res = make_nodes(&data)) < 0) {
printf(
"can't make nodes: %d (%s)\n", res,
spa_strerror(res));
return -1;
}
if ((res = negotiate_formats(&data)) < 0) {
printf(
"can't negotiate nodes: %d (%s)\n", res,
spa_strerror(res));
return -1;
}
printf("using %s mode\n", data.mode);
if (data.volume_ramp_samples && data.volume_ramp_step_samples)
printf("using %d samples with a step size of %d samples to ramp volume at %s scale\n",
data.volume_ramp_samples, data.volume_ramp_step_samples, getscale(data.scale));
else if (data.volume_ramp_time && data.volume_ramp_step_time)
printf("using %d msec with a step size of %d msec to ramp volume at %s scale\n",
data.volume_ramp_time, (data.volume_ramp_step_time/1000), getscale(data.scale));
run_async_sink(&data);
}
@ SPA_META_Header
struct spa_meta_header
Definition meta.h:27
@ SPA_DATA_MemPtr
pointer to memory, the data field in struct spa_data is set.
Definition buffer.h:33
@ SPA_CONTROL_Properties
data contains a SPA_TYPE_OBJECT_Props
Definition control.h:32
#define SPA_DICT_ITEM_INIT(key, value)
Definition dict.h:37
#define SPA_DICT_INIT(items, n_items)
Definition dict.h:48
static void spa_graph_node_set_callbacks(struct spa_graph_node *node, const struct spa_graph_node_callbacks *callbacks, void *data)
Definition graph.h:249
static const struct spa_graph_node_callbacks spa_graph_node_impl_default
Definition graph.h:342
static void spa_graph_init(struct spa_graph *graph, struct spa_graph_state *state)
Definition graph.h:185
static void spa_graph_node_add(struct spa_graph *graph, struct spa_graph_node *node)
Definition graph.h:257
static void spa_graph_node_init(struct spa_graph_node *node, struct spa_graph_state *state)
Definition graph.h:212
static void spa_graph_port_init(struct spa_graph_port *port, enum spa_direction direction, uint32_t port_id, uint32_t flags)
Definition graph.h:279
static void spa_graph_port_add(struct spa_graph_node *node, struct spa_graph_port *port)
Definition graph.h:291
static void spa_graph_port_link(struct spa_graph_port *out, struct spa_graph_port *in)
Definition graph.h:306
#define spa_graph_node_process(n)
Definition graph.h:119
int(* spa_handle_factory_enum_func_t)(const struct spa_handle_factory **factory, uint32_t *index)
The function signature of the entry point in a plugin.
Definition plugin.h:182
#define SPA_HANDLE_FACTORY_ENUM_FUNC_NAME
Definition plugin.h:186
#define SPA_SUPPORT_INIT(type, data)
Definition plugin.h:95
#define spa_handle_factory_init(h,...)
Definition plugin.h:170
#define spa_handle_get_interface(h,...)
Definition plugin.h:60
#define spa_handle_factory_get_size(h,...)
Definition plugin.h:169
#define SPA_KEY_LOG_TIMESTAMP
log timestamps
Definition log.h:389
#define SPA_LOG_IMPL(name)
Definition log-impl.h:118
#define SPA_TYPE_INTERFACE_Log
The Log interface.
Definition log.h:58
#define spa_loop_control_enter(l)
Enter a loop.
Definition loop.h:293
#define spa_loop_control_leave(l)
Leave a loop.
Definition loop.h:296
#define spa_loop_control_iterate(l,...)
Perform one iteration of the loop.
Definition loop.h:299
#define SPA_TYPE_INTERFACE_DataLoop
Definition loop.h:33
#define SPA_TYPE_INTERFACE_Loop
Definition loop.h:31
#define SPA_TYPE_INTERFACE_LoopControl
Definition loop.h:39
#define SPA_NAME_SUPPORT_LOG
A Log interface.
Definition names.h:32
#define SPA_NAME_SUPPORT_LOOP
A Loop/LoopControl/LoopUtils interface.
Definition names.h:34
#define SPA_NAME_SUPPORT_SYSTEM
A System interface.
Definition names.h:37
#define SPA_NAME_AUDIO_ADAPT
combination of a node and an audio.convert.
Definition names.h:79
#define SPA_NAME_API_ALSA_PCM_SINK
an alsa Node interface for playback PCM
Definition names.h:109
#define spa_node_set_io(n,...)
Configure the given memory area with id on node.
Definition node.h:734
#define SPA_STATUS_OK
Definition io.h:81
#define SPA_STATUS_HAVE_DATA
Definition io.h:85
#define SPA_TYPE_INTERFACE_Node
Definition node.h:37
#define SPA_VERSION_NODE_CALLBACKS
Definition node.h:234
#define SPA_STATUS_NEED_DATA
Definition io.h:83
#define spa_node_port_set_io(n,...)
Configure the given memory area with id on port_id.
Definition node.h:755
#define SPA_STATUS_STOPPED
Definition io.h:87
#define spa_node_set_param(n,...)
Set the configurable parameter in node.
Definition node.h:731
#define spa_node_port_set_param(n,...)
Set a parameter on port_id of node.
Definition node.h:749
static int spa_node_port_enum_params_sync(struct spa_node *node, enum spa_direction direction, uint32_t port_id, uint32_t id, uint32_t *index, const struct spa_pod *filter, struct spa_pod **param, struct spa_pod_builder *builder)
Definition utils.h:78
#define spa_node_send_command(n,...)
Send a command to a node.
Definition node.h:737
#define SPA_IO_BUFFERS_INIT
Definition io.h:95
#define SPA_NODE_COMMAND_INIT(id)
Definition command.h:49
#define spa_node_port_use_buffers(n,...)
Tell the port to use the given buffers.
Definition node.h:752
#define spa_node_set_callbacks(n,...)
Set callbacks to on node.
Definition node.h:722
@ SPA_IO_Clock
area to update clock information, struct spa_io_clock
Definition io.h:40
@ SPA_IO_Position
position information in the graph, struct spa_io_position
Definition io.h:45
@ SPA_IO_Buffers
area to exchange buffers, struct spa_io_buffers
Definition io.h:38
@ SPA_NODE_COMMAND_Pause
pause a node.
Definition command.h:28
@ SPA_NODE_COMMAND_Start
start a node, this makes it start emitting scheduling events
Definition command.h:30
static struct spa_pod * spa_format_audio_raw_build(struct spa_pod_builder *builder, uint32_t id, const struct spa_audio_info_raw *info)
Definition raw-utils.h:47
static struct spa_pod * spa_format_audio_dsp_build(struct spa_pod_builder *builder, uint32_t id, const struct spa_audio_info_dsp *info)
Definition dsp-utils.h:38
#define SPA_AUDIO_INFO_DSP_INIT(...)
Definition dsp.h:29
#define SPA_AUDIO_INFO_RAW_INIT(...)
Definition raw.h:293
spa_audio_volume_ramp_scale
Definition raw.h:272
@ SPA_PROP_volumeRampStepSamples
Step or incremental Samples to ramp the volume over.
Definition props.h:96
@ SPA_PROP_minLatency
Definition props.h:53
@ SPA_PROP_device
Definition props.h:47
@ SPA_PROP_live
Definition props.h:58
@ SPA_PROP_volume
a volume (Float), 0.0 silence, 1.0 no attenutation
Definition props.h:67
@ SPA_PROP_volumeRampTime
Time in millisec to ramp the volume over.
Definition props.h:98
@ SPA_PROP_volumeRampStepTime
Step or incremental Time in nano seconds to ramp the.
Definition props.h:99
@ SPA_PROP_volumeRampSamples
Samples to ramp the volume over.
Definition props.h:95
@ SPA_PROP_frequency
Definition props.h:66
@ SPA_PROP_volumeRampScale
the scale or graph to used to ramp the volume
Definition props.h:101
@ SPA_PARAM_PORT_CONFIG_MODE_dsp
dsp configuration, depending on the external format.
Definition port-config.h:28
@ SPA_MEDIA_TYPE_application
Definition format.h:32
@ SPA_PARAM_Format
configured format as SPA_TYPE_OBJECT_Format
Definition param.h:34
@ SPA_PARAM_PortConfig
port configuration as SPA_TYPE_OBJECT_ParamPortConfig
Definition param.h:41
@ SPA_PARAM_Props
properties as SPA_TYPE_OBJECT_Props
Definition param.h:32
@ SPA_PARAM_Buffers
buffer configurations as SPA_TYPE_OBJECT_ParamBuffers
Definition param.h:35
@ SPA_PARAM_PORT_CONFIG_mode
(Id enum spa_param_port_config_mode) mode
Definition port-config.h:37
@ SPA_PARAM_PORT_CONFIG_format
(Object) format filter
Definition port-config.h:40
@ SPA_PARAM_PORT_CONFIG_control
(Bool) enable control ports
Definition port-config.h:39
@ SPA_PARAM_PORT_CONFIG_direction
(Id enum spa_direction) direction
Definition port-config.h:36
@ SPA_AUDIO_CHANNEL_MONO
mono stream
Definition raw.h:163
@ SPA_FORMAT_mediaType
media type (Id enum spa_media_type)
Definition format.h:93
@ SPA_FORMAT_mediaSubtype
media subtype (Id enum spa_media_subtype)
Definition format.h:94
@ SPA_MEDIA_SUBTYPE_control
control stream, data contains spa_pod_sequence with control info.
Definition format.h:85
@ SPA_AUDIO_FORMAT_F32P
Definition raw.h:78
@ SPA_AUDIO_FORMAT_S16
Definition raw.h:94
@ SPA_PARAM_BUFFERS_size
size of a data block memory (Int)
Definition buffers.h:29
@ SPA_AUDIO_VOLUME_RAMP_CUBIC
Definition raw.h:275
@ SPA_AUDIO_VOLUME_RAMP_LINEAR
Definition raw.h:274
#define SPA_POD_String(val)
Definition vararg.h:94
#define SPA_POD_Bool(val)
Definition vararg.h:44
static int spa_pod_fixate(struct spa_pod *pod)
Definition iter.h:433
static int spa_pod_builder_push_sequence(struct spa_pod_builder *builder, struct spa_pod_frame *frame, uint32_t unit)
Definition builder.h:460
#define SPA_POD_Id(val)
Definition vararg.h:49
static void * spa_pod_builder_pop(struct spa_pod_builder *builder, struct spa_pod_frame *frame)
Definition builder.h:168
static int spa_pod_builder_control(struct spa_pod_builder *builder, uint32_t offset, uint32_t type)
Definition builder.h:471
#define spa_pod_builder_add_object(b, type, id,...)
Definition builder.h:659
#define SPA_POD_Float(val)
Definition vararg.h:76
static void spa_pod_builder_init(struct spa_pod_builder *builder, void *data, uint32_t size)
Definition builder.h:87
#define spa_pod_parse_object(pod, type, id,...)
Definition parser.h:576
#define SPA_POD_Int(val)
Definition vararg.h:54
#define SPA_POD_Pod(val)
Definition vararg.h:128
#define spa_strerror(err)
Definition result.h:49
static bool spa_streq(const char *s1, const char *s2)
Definition string.h:41
#define SPA_TYPE_INTERFACE_System
a collection of core system functions
Definition system.h:39
#define SPA_TYPE_INTERFACE_DataSystem
Definition system.h:41
@ SPA_TYPE_OBJECT_ParamPortConfig
Definition type.h:81
@ SPA_TYPE_OBJECT_ParamBuffers
Definition type.h:77
@ SPA_TYPE_OBJECT_Props
Definition type.h:75
@ SPA_TYPE_OBJECT_Format
Definition type.h:76
#define spa_aprintf(_fmt,...)
Definition defs.h:485
#define spa_zero(x)
Definition defs.h:465
#define SPA_FRACTION(num, denom)
Definition defs.h:136
@ SPA_DIRECTION_INPUT
Definition defs.h:107
@ SPA_DIRECTION_OUTPUT
Definition defs.h:108
Audio information description.
Definition raw.h:284
A Buffer.
Definition buffer.h:90
Chunk of memory, can change for each buffer.
Definition buffer.h:43
Data for a buffer this stays constant for a buffer.
Definition buffer.h:62
const struct spa_dict_item * items
Definition dict.h:44
uint32_t version
Definition plugin.h:101
const struct spa_dict * info
Extra information about the handles of this factory.
Definition plugin.h:119
IO area to exchange buffers.
Definition io.h:79
The position information adds extra meaning to the raw clock times.
Definition io.h:307
Node callbacks.
Definition node.h:232
void * data
Definition builder.h:54
struct spa_pod_builder_state state
Definition builder.h:57
uint32_t size
Definition pod.h:44
Extra supporting infrastructure passed to the init() function of a factory.
Definition plugin.h:76